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Abstract

The purpose of a model of computation is to provide the algorithm designer with
a device for running algorithms. It should be conceptually clear to let him or her
concentrate at the algorithmic ideas for solving the problem. At the same time it
should be concrete enough to give a realistic estimate on the use resources when the
algorithm is executed on a real computer. In this paper we analyze some weaknesses
of existing models of computation, namely sequential access machine and random
access machine, and propose a new cost model, called relative cost random access
machine, which solves some contradictions between these models. The new model
actually only generalizes the way of counting the complexity, and includes sequential
access machines and random access machines as special cases. At the same time, it
is flexible enough to characterize the cost of memory access in current computers.

1 Introduction

In the first half of twentieth century, before the existence of computers, the concept of
decidability became actual in mathematics. There was a need to define exactly, what
is computation, and that gave rise to several models of computation, the best known of
which is perhaps the Turing machine [6]. The pricipal elements in these models were the
program that was characterized by a finite set of instructions, and the memory could grow
without limit. The essential instructions were branching in the program depending on data
in memory that was available at that moment, and moving in memory, i.e. making new
memory locations immediately available and losing the immediate availability of others.
In Turing machine, the memory is organized as a linear sequence, and in one step of
computation, one can only move to the memory location next to the current location.
Therefore, we call Turing’s model a sequential access machine, SAM for short, in contrast
with other memory access models to be defined later. The sequential access models makes,
of course, an access to a random memory location slow, because the time needed to access
it is proportional to the difference of the addressess of the current and the required memory
locations.
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When computers became available and algorithm theory developed, there grew a need
to model the computation more exactly so that the complexity of the algorithm should
translate to the real running time of the program in the computer. The new model was
called a random access machine (RAM), because all of the memory locations were more
or less immediately accessible [5]. In the extreme case, in the unit cost model, the memory
access is not charged at all, but all instructions take unit time only. The abuse of this feature
may lead to unpleasant results, such as solving NP-complete problems in polynomial time
[2]. A more realistic approach is to charge memory accesses by the sizes of the address and
contents of the memory location, usually logarithmically. This prevents artificial coding
of large amounts of data in a few memory locations, to be manipulated at unit cost.
Polynomial time transformations between SAM and RAM computations are one of the
cornerstones of the NP-completeness theory [1].

In the next section, we show some examples, where SAM (and respectively RAM)
models well the computation, and where it doesn’t. In many occasions, neither of the two
models captures a right abstraction of the computation by a modern computer. We suggest
a minor but significant extension for the definition of memory access. Our relative cost
random access machine works otherwise like the traditional random access machine, but
instructions are charged depending on the recent history of computation so that memory
operations on a new memory area are costlier than those using the neighborhood of recently
used memory locations.

2 SAM and RAM

A sequential access machine M consists of a finite alphabet A, m registers r,...,7"m, k
memory tapes, pointers pi,...,pg into the memory tapes, and a program P. A program
is a sequence of labelled or unlabelled instructions, where each instruction is one of the
following:

read 7; read a symbol from input device and store it into register r;

write r; write the symbol in register r; to output device

Ti = *P; load the pointed symbol from tape j to register r;

*pj =T store the symbol in register r; to the pointed cell of tape j

if r; or; goto [ if registers r; and r; fulfill the relation ¢ (= or #) then continue
at instruction labelled with [ otherwise continue at the next

instruction
right : move pointer on tape ¢ one cell to the right
left ¢ move pointer on tape 7 one cell to the left
A random access machine M consists of an input/output alphabet A, m registers ry,...,rm
containing (arbitrarily large) integers, a memory whose locations are indexed with ad-
dresses 1,2,3,..., a pointer p (p > 1) into the memory, and a program P. A program

is a sequence of labelled or unlabelled instructions, where each instruction is one of the
following:
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read r; read a symbol from input device and store its integer code
into register r;

write r; write the symbol corresponding to the contents of register r;
to the output device

T 1= %P load the contents of address p in register r;

xp =T store the contents of register r; to the address p

if r; or; goto [ if registers r; and r; fulfill the relation ¢ (=, #, <, >, <, >)
then continue at instruction labelled with [ otherwise continue
at the next instruction

Tii=TjOTy apply operation o (+ or —) to the contents of the registers r;
and 7 and store the result in r;

rii=Dp store pointer (address) in the register r;

pi=7; load pointer p from the register r;

The readability of the algorithms written for these machines can be improved by adding
control structures such as while do and for to loops that can be translated to the language
defined above.

The cost of computation of a sequential access machine is the number of steps taken
before the program halts. The unit cost of computation of a random access machine is
defined likewise as the number of steps. Under the logarithmic cost model of random
access machine, the cost of the expression *p := r is I(v(r)) + [(v(p)), and the cost of the
expression r := *p is [(v(p)) + {(v(v(p))), where v(z) refers to the numerical value that the
register or pointer x contains, and [(0) = I(1) = 1, I(y) = [logy] for y > 1.

With the following examples we point out some strengths and weaknesses of these two
models of computation.

Example 2.1 Palindromes by SAM. Test if an input string equals its reversal.

read r;
while r; # () do
xpy :=rq; right 1
xpg 1= 11; right 2
read r;
left 1; ry := *xp;
while r; # 0 do
left 1; r := *p,
right 1; 71 := xpq; left 2; ry := *py
while r; = ry # () do
right 1; r, := xpy; left 2; ry := *py
if r; = r, = () goto yes

On input of length n the cost of recognition is about 2n. The SAM algorithm can easily
be modified to a RAM algorithm.
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Example 2.2 Palindromes by RAM.

ri:=p:=1;read r3; ry :=1r3
while r, # 0 do
*xp 1= ry4; inc p
read 7,
dec p; 2 =p
while r3 = r, # () do
inc ry; p:=ry;ry == *p
dec ry; p:=19;14 1= *p
if r3 =r, = () goto yes

If unit cost is used, palindromes are recognized in linear time. However, if logarithmic cost
is used, the time is ©(nlogn), which is worse than the time required by SAM. Actually
Schonhage [4] has proved a nonlinear lower bound for random access machines.

The following, somewhat artificial example shows, that by defining the problem context
differently, one can get drastically different results.

Example 2.3 Touching problem is an abstraction of a database problem. Given n keys.
For m times, choose a key at random and touch it.

It the problem is given on an input tape, a SAM can read constant length keys in time
n. As keys are touched randomly, each touching may imply reading through all the data
area, i.e. ©(n) time, and thus all touches require ©(mn) time.

By using unit cost RAM reading the input can also be done in time O(n). In this case,
each touch takes only O(1) time, and total time is ©(n + m).

By logarithmic cost, reading takes time O (n logn), and each touching is done in ©(logn)
time, giving the total of ©((m + n)logn).

Note that if reading time of an input is not counted, touching an individual key takes
the time ©(n), O(1), and ©(logn) in these models, respectively.

3 Relative Cost RAM

As the computation and cost models of the previous section give different results, one
should ask, which is right and which is wrong. It should be remembered that the original
role of Turing machine was to model algorithmic computability, it was not intended to be
a tool of performance analysis. Random access model was to model computers, as they
were invented in late fourties. As decades have passed, it is natural to ask, how exactly
these models model performance of computations in current computers.

Referring to the previous section, SAM does well in the analysis of the palindrome
problem. Unit cost RAM also also gave right complexity, but logarithmic cost RAM
probably pays too much, as this kind of sequential access should be easy in all memory
architectures. In the touching example, SAM is too expensive, unit cost RAM is too cheap,
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while logarithmic cost RAM probably matches best the reality. However, if the problem
size grows larger than the main memory, the results lose validity.

The SAM favours locality in the memory access, assuming that the cost of access de-
pends linearly on the difference of addresses. As the speed of processors has grown con-
tinuously, speed of light is already a non-negligible factor in memory access times. Hence,
locality and sequential access should not be completely forgotten, and in future even less
so. Common techniques to add locality have been to increase the number of registers (as in
RISC processors), to use caches between the processor and the main memory, and paging
between the main memory and the external memory. Even if these features of hardware
make estimating the complexity of the algorithm more difficult, they should be used when
appropriate, and hence included in the abstract model.

The RAM assumes a fast access to a uniform main memory. Unit cost RAM is unre-
alistic if there is no word size limit, because it would allow coding large subproblems in a
single integer. Using explicit word sizes, on the other hand, would make algorithm writing
and complexity analysis too complicated. Logarithmic cost RAM eliminates the need to
use word size, but it ignores the locality. Strangely, low addresses are cheaper than high
addresses, which would suggest concentrating the computation in low addresses. This is
questionable in practice and probably just an anomaly of the model.

When considering the complexity of the memory access, at least the following factors
are significant:

e (Overhead. Each memory operation needs some kind of activation of the access mech-
anism. We may assume that it is constant, but probably this constant is higher than
the time required by the internal operations of the processor. This cost appears even
in the unit cost RAM.

e Logical complerity. A part in memory access is to recognize the target of the oper-
ation. If the hardware uses some kind of binary switching for opening the gates to
the target location, we may assume that the cost is logarithmic to the address of the
memory location. Logarithmic cost RAM emphasizes this complexity.

e Volume. Moving bigger data should be more expensive than moving smaller data. A
natural measure is the number of bits, or the logarithmic cost of the contents. This
complexity factor is included in the logarithmic cost RAM.

e Distance. Moving to a longer distance requires more time than moving to a short
distance. In 3-dimensional world the physical distance is at least proportional to the
cubic root of the number of memory locations. A simple estimate is the difference of
addresses. Turing machine models the distance complexity.

One more feature of existing computers, cache, can be taken to the model. The idea
of cache is based on locality. If some memory location is needed, it is likely that in near
future more data in its neighborhood will be needed. Therefore, the whole neighborhood
is transferred from the distant place (main or external memory) to a near place, cache.
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Now the neighborhood will be easily available for some time. Therefore, the computation
is history dependent.
We suggest the following relative cost function

Cost = min{c(a,a_1),...,cx(a,a_g)},
where

1. k£ is a constant referring to the number of memory pages the computer keeps in
memory, and a_1,...,a_; are addresses accessed in k last memory operations

2. each ¢;(a, a_;) is of the form

a —a_

do + dilogla —a_;| + ds| 7 ]

where
3. dy is the access overhead required by the processor and memory chips

4. dylogla — a_;| describes the switching complexity of choosing the required address,
and

5. dy [@J estimates the complexity of fetching a block of size b, derived from the
speed of light and the properties of the bus and the network of the computer

The formula with all components is unmanageable, and therefore only the most significant
terms should be used. In case £k = 1 we have the following subcases:

o If dy =1, d; = dy =0, we have unit cost RAM.
o If di =1, dy = dy = 0, we have logarithmic cost RAM.
L] Ifdg =b= 1, do :d1 :0, we have SAM.

By the definition of the cost function, it is obvious that the use of memory is an
important factor in the efficiency of a program. It the program is memory intensive,
the latency of memory access is wasted time, and there may be no method to avoid this
inefficiency. However, parallelism may help. If there is a parallel algorithm for the problem,
slackness 7] may help. If the cost of a memory access is ¢ and at least ¢ subcomputations
can be started independently, useless waiting can be avoided. Actually, the same idea is
applied is smaller case in the processor level parallelism, such as pipelining or VLIW (very
long instruction word) architectures [3].
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4 Conclusions

Choosing a model of computing is difficult play of balancing between simplicity and exact-
ness. If model is not simple, it cannot be used in algorithm design. If it is not exact, it is
useless because it does not help to forecast the performance of the program.

We propose a cost model, or a framework of cost models, that generalizes the well-
known sequential access and random access models, and allows for more exact modeling
of real computations. The essential feature of the new model is the relativization of the
access. At simplest, the model is not more complex than SAM or RAM, but with some
more detail it makes possible to analyse more exactly algorithms to be run in a computer
with multiple registers, or paging.
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